搜索:

当前位置:首页 >>评测>> 汽车术语

ABS

出处:爱卡汽车网 爱卡汽车网 汽车论坛 汽车报价 [ ]

 ABS

有什么用?
 
•在急刹车的情况下保证车辆方向可控来躲避障碍,是一项安全配置。
 
•提升急刹车的情况下的刹车效果,缩短刹车距离。
 
•在松软的路面上,比如沙地、雪地,ABS会明显增加刹车距离。因为在这种情况下锁紧的车轮会挤压路面而形成隆起,进而陷入土堆,而使用ABS的车辆则能轻易越过跟减少这样的隆起。这使ABS控制的车辆在野外或雪地能更快速的移动。ABS能够加强车辆在各种情况下的操纵性,一般的驾驶在急刹车过程中仍然能够绕过障碍物,这在没有ABS的状况一般驾驶是几乎是完全不可能办到的,从而可以大大提升驾驶安全性。

ABS

 
 
误区:
 
•装有ABS系统的汽车在使用刹车时,刹车踏板会有上下震动的现象,这便是ABS在正常工作。ABS工作时就相当于以很高的频率进行点刹,于是在紧急情况下踩制动踏板,肯定会感到制动踏板在颤动,同时也会听到制动总泵发出的“哒哒”声,由于制动总泵在不断调整制动压力,从而对制动踏板有连续的反馈力。因此,在这种情况下,一定要“坚定不移”地踩住制动踏板,同时采取积极措施避险。
 
•ABS系统只有在车轮近似于抱死时起作用,而并不是每次采取制动时都工作,ABS工作时可以通过声音和制动踏板感觉出来。
 
•ABS警告灯突然亮起无须慌张,车子的制动系统仍正常,但已不具备ABS功能,请尽快检修;若ABS和手刹灯同时点亮,则说明车辆的制动系统可能出现严重故障。 
 
 
原理:
 
    防抱死制动系统是利用阀体内的一个橡胶气囊,在踩下刹车时,给予刹车油压力,充斥到ABS的阀体中,此时气囊利用中间的空气隔层将压力返回,使车轮避过锁死点。当车轮即将到达下一个锁死点时,刹车油的压力使得气囊重复作用,如此在一秒钟内可作用60~120次,相当于不停地刹车、放松,即相似于机械的“点刹’。因此,ABS防抑死系统,能避免在紧急刹车时方向失控及车轮侧滑,使车轮在刹车时不被锁死,不让轮胎在一个点上与地面摩擦,从而加大摩擦力,使刹车效率达到90%以上,同时还能减少刹车消耗,延长刹车轮鼓、碟片和轮胎两倍的使用寿命。装有ABS的车辆在干柏油路、雨天、雪天等路面防滑性能分别达到80%—90%、30%—10%、15%—20%。
 
    汽车在制动时,车速与轮速之间产生速度差,车轮发生滑动现象。滑动率的定义为:在非制动状态(滑动率为0)下,制动附着系数等于0;在制动状态下,滑动率达到最优滑动率时,制动附着系数最大,在此之前的区域为稳定区域;之后,随着滑动率的增大制动附着系数反而减少,侧向附着系数也下降很快,汽车进入不稳定区域,特别是当滑动率为100%时,侧向附着系数接近于0,也就是汽车不能承受侧向力,这是很危险的。所以应将制动滑动率控制在稳定区域内。附着系数的大小取决于道路的材料、状况以及轮胎的结构、胎面花纹和车速等因素。
 
  在制动时车轮由于制动力矩的作用,地面给车轮一个制动力。随着制动力矩的增大,制动压力增大,车轮速度开始降低,滑动率和车轮转矩增大。可以认为在最优滑动率之前,车轮转矩和制动力矩同步增长,这就是说,在该阶段车轮减速度和制动力矩增大速度成正比且在该区域制动主要是滑转。但是,继续增大制动力矩,滑动率超过最优滑动率后进入不稳定区域,车轮的滑转程度不断增加,制动附着系数将减少,侧向附着系数将迅速降低。最终使车轮速度大幅度减少直至车轮抱死,这期间的车轮减速度非常大。轮胎印迹的变化经历了车轮自由滚动、制动和抱死三个过程。 
 
    ABS系统中,能够独立进行制动压力调节的制动管路称为控制通道。如果对某车轮的制动压力可以进行单独调节,这种控制方式称为独立控制;如果对两个(或两个以上)车轮的制动压力一同进行调节,则称这种控制方式为一同控制。在两个车轮的制动压力进行一同控制时,如果以保证附着力较大的车轮不发生制动抱死为原则进行制动压力调节,称这种控制方式为按高选原则一同控制;如果以保证附着力较小的车轮不发生制动抱死为原则进行制动压力调节,则称这种控制方式为按低选原则一同控制。
 
    按照控制通道数目的不同,ABS系统分为四通道、三通道、双通道和单通道四种形式,而其布置形式却多种多样。
 
 

ABS

 仪表上ABS显示灯
 
•四通道ABS
 
  对应于双制动管路的H型(前后)或X型(对角)两种布置形式,四通道ABS也有两种布置形式。为了对四个车轮的制动压力进行独立控制,在每个车轮上各安装一个转速传感器,并在通往各制动轮缸的制动管路中各设置一个制动压力调节分装置(通道)。由于四通道ABS可以最大程度地利用每个车轮的附着力进行制动,因此汽车的制动效能最好。但在附着系数分离(两侧车轮的附着系数不相等)的路面上制动时,由于同一轴上的制动力不相等,使得汽车产生较大的偏转力矩而产生制动跑偏。因此,ABS通常不对四个车轮进行独立的制动压力调节。    
 
•三通道ABS
 
  四轮ABS大多为三通道系统,而三通道系统都是对两前轮的制动压力进行单独控制,对两后轮的制动压力按低选原则一同控制。
 
   按对角布置的双管路制动系统中,虽然在通往四个制动轮缸的制动管路中各设置一个制动压力调节分装置,但两个后制动压力调节分装置却是由电子控制装置一同控制的,实际上仍是三通道ABS。由于三通道ABS对两后轮进行一同控制,对于后轮驱动的汽车可以在变速器或主减速器中只设置一个转速传感器来检测两后轮的平均转速。
 
    汽车紧急制动时,会发生很大的轴荷转移(前轴荷增加,后轴荷减小),使得前轮的附着力比后轮的附着力大很多(前置前驱动汽车的前轮附着力约占汽车总附着力的70%-80%)。对前轮制动压力进行独立控制,可充分利用两前轮的附着力对汽车进行制动,有利于缩短制动距离,并且汽车的方向稳定性却得到很大改善。
 
 •双通道ABS
 
  双通道ABS在按前后布置的双管路制动系统的前后制动管路中各设置一个制动压力调节分装置,分别对两前轮和两后轮进行一同控制。两前轮可以根据附着条件进行高选和低选转换,两后轮则按低选原则一同控制。
 
   对于后轮驱动的汽车,可以在两前轮和传动系中各安装一个转速传感器。当在附着系数分离的路面上进行紧急制动时,两前轮的制动力相差很大,为保持汽车的行驶方向,驾驶员会通过转动转向盘使前轮偏转,以求用转向轮产生的横向力与不平衡的制动力相抗衡,保持汽车行驶方向的稳定性。但是在两前轮从附着系数分离路面驶入附着系数均匀路面的瞬间,以前处于低附着系数路面而抱死的前轮的制动力因附着力突然增大而增大,由于驾驶员无法在瞬间将转向轮回正,转向轮上仍然存在的横向力将会使汽车向转向轮偏转方向行驶,这在高速行驶时是一种无法控制的危险状态。
 
  双通道ABS多用于制动管路对角布置的汽车上,两前轮独立控制,制动液通过比例阀(P阀)按一定比例减压后传给对角后轮。对于采用此控制方式的前轮驱动汽车,如果在紧急制动时离合器没有及时分离,前轮在制动压力较小时就趋于抱死,而此时后轮的制动力还远未达到其附着力的水平,汽车的制动力会显著减小。而对于采用此控制方式的后轮驱动汽车,如果将比例阀调整到正常制动情况下前轮趋于抱死时,后轮的制动力接近其附着力,则紧急制动时由于离合器往往难以及时分离,导致后轮抱死,使汽车丧失方向稳定性。由于双通道ABS难以在方向稳定性、转向操纵能力和制动距离等方面得到兼顾,因此目前很少被采用。
 
•单通道ABS  
 
   所有单通道ABS都是在前后布置的双管路制动系统的后制动管路中设置一个制动压力调节装置,对于后轮驱动的汽车只需在传动系中安装一个转速传感器。对于后轮驱动的汽车,可以在两前轮和传动系中各安装一个转速传感器。当在附着系数分离的路面上进行紧急制动时,两前轮的制动力相差很大,为保持汽车的行驶方向,驾驶员会通过转动转向盘使前轮偏转,以求用转向轮产生的横向力与不平衡的制动力相抗衡,保持汽车行驶方向的稳定性。 
 
  在两前轮从附着系数分离路面驶入附着系数均匀路面的瞬间,以前处于低附着系数路面而抱死的前轮的制动力因附着力突然增大而增大,由于驾驶员无法在瞬间将转向轮回正,转向轮上仍然存在的横向力将会使汽车向转向轮偏转方向行驶,这在高速行驶时是一种无法控制的危险状态。 
 
  在制动时轮速传感器测量车轮的速度,如果一个车轮有抱死的可能时,车轮减速度增加很快,车轮开始滑转。如果该减速度超过设定的值,控制器就会发出指令,让电磁阀停止或减少车轮的制动压力,直到抱死的可能消失为止。为防止车轮制动力不足,必须再次增加制动压力。在自动制动控制过程中,必须连续测量车轮运动是否稳定,应通过调节制动压力(加压、减压和保压)使车轮保持在制动力最大的滑转范围内。制动控制的参数一般为车轮的减速度、加速度以及滑动率的三者综合。
 
    在制动开始时,制动压力和车轮角减速度增加,在阶段1末,即轮减速度达到设定的门限值-a,(这里指绝对值),相应的电磁阀转换到“压力保持”状态,同时形成参考车速并在给定的斜率下作相应递减,滑动率的值是由参考车速计算得出,如果滑动率小于门限值,系统则进行一段保压(阶段2),当滑动率大于门限值,电磁阀转换到“压力下降”的状态,即阶段3,由于制动压力下降,车轮的角减速度回升,当达到-a值时,制动压力开始保持(第4阶段),当轮角减速度随着车轮的回升达到加速,达到门限值+a,这时压力仍然保持,让车轮进一步回升到门限值+Ak(表明是高附着系数路面),这时使制动压力再次增加(第5阶段),使车轮角加速度下降,;当车轮角加速度再回到+Ak时,进行保压(第6阶段);车轮角加速度值回落到+a值,此时车轮已进入稳定制动区域,并且稍有制动不足,这一区域的制动时间要尽可能延长,因此,阶段7的制动压力采用小的阶梯上升,一般较初始压力梯度小得多,直到车轮减速度再次超过门限值-a值,以后的控制循环过程就和前面一样了。 
 
发展历史:
 
    世界上第一台防抱死制动系统 ABS(Anti-locked Brake System), 在 1950 年问世,首先被应用在航空领域的飞机上, 1968 年开始研究在汽车上应用。 70 年代,由于欧美七国生产的新型轿车的前轮或前后轮开始采用盘式制动器,促使了 ABS 在汽车上的应用。 1980 年后,电脑控制的 ABS 逐渐在欧洲、美国及亚洲日本的汽车上迅速扩大。到目前为止,一些中高级豪华轿车,如德国的奔驰、宝马、奥迪、保时捷、欧宝等系列,英国的劳斯来斯、捷达、路华、宾利等系列,意大利的法拉利、的爱快、领先、快意等系列,法国的波尔舍系列,美国福特的 TX3 、 30X 、红慧星及克莱斯勒的帝王、纽约豪客、男爵、道奇、顺风等系列,日本的思域,凌志、豪华本田、奔跃、俊朗、淑女 300Z 等系列,均采用了先进的 ABS 。到 1993 年,美国在轿车上安装 ABS 已达 46% ,现今在世界各国生产的轿车中有近 75% 的轿车应用 ABS 。   
 
    现今全世界已有本迪克斯、波许、摩根 . 戴维斯、海斯 . 凯尔西、苏麦汤姆、本田、日本无限等许多公司生产 ABS ,它们中又有整体和非整体之分。预计随着轿车的迅速发展,将会有更多的厂家生产。
 
    ABS系统的发展可以追溯到本世纪初期,早在1928年制动防抱理论就被提出,在30年代机械式制动防抱系统就开始在火车和飞机上获得应用,博世(BOSCH)公司在1936年第一个获得了用电磁式车轮转速传感器获取车轮转速的制动防抱系统的专利权。
  
    进入50年代,汽车制动防抱系统开始受到较为广泛的关注。福特(FORD)公司曾于1954年将飞机的制动防抱系统移置在林肯(LINCOIN)轿车上,凯尔塞•海伊斯(KELSEHAYES)公司在1957年对称为“AUTOMATIC”的制动防抱系统进行了试验研究,研究结果表明制动防抱系统确实可以在制动过程中防止汽车失去方向控制,并且能够缩短制动距离;克莱斯勒(CHRYSLER)公司在这一时期也对称为“SKIDCONTROL”的制动防抱系统进行了试验研究。由于这一时期的各种制动防抱系统采用的都是机械式车轮转速传感器的机械式制动压力调节装置,因此,获取的车轮转速信号不够精确,制动压力调节的适时性和精确性也难于保证,控制效果并不理想。   
 
    随着电子技术的发展,电子控制制动防抱系统的发展成为可能。在60年代后期和70年代初期,一些电子控制的制动防抱系统开始进入产品化阶段。凯尔塞•海伊斯公司在1968年研制生产了称为“SURETRACK”两轮制动防抱系统,该系统由电子控制装置根据电磁式转速传感器输入的后轮转速信号,对制动过程中后轮的运动状态进行判定,通过控制由真空驱动的制动压力调节装置对后制动轮缸的制动压力进行调节,并在1969年被福特公司装备在雷鸟(THUNDERBIRD)和大陆•马克III(CONTINENTALMKIII)轿车上。克莱斯勒公司与本迪克斯(BENDIX)公司合作研制的称为“SURE-TRACK”的能防止4个车轮被制动抱死的系统,在1971年开始装备帝国(IMPERIAL)轿车,其结构原理与凯尔塞•海伊斯的“SURE-TRACK”基本相同,两者不同之处,只是在于两个还是四个车轮有防抱制动。博世公司和泰威士(TEVES)公司在这一时期也都研制了各自第一代电子控制制动防抱系统,这两种制动防抱系统都是由电子控制装置对设置在制动管路中的电磁阀进行控制,直接对各制动轮以电子控制压力进行调节。别克(BUICK)公司在1971年研制了由电子控制装置自动中断发动机点火,以减小发动机输出转矩,防止驱动车轮发生滑转的驱动防抱转系统.瓦布科(WABCO)公司与奔驰(BENZ)公司合作,在1975年首次将制动防抱系统装备在气压制动的载货汽车上。第一台防抱死制动系统ABS(Anti-lock Brake System),在1950年问世,首先被应用在航空领域的飞机上,1968年开始研究在汽车上应用。70年代,由于欧美七国生产的新型轿车的前轮或前后轮开始采用盘式制动器,促使了ABS在汽车上的应用。1980年后,电脑控制的ABS逐渐在欧洲、美国及亚洲日本的汽车上迅速扩大。到目前为止,一些中高级豪华轿车,如西德的奔驰、宝马、雅迪、保时捷、欧宝等系列,英国的劳斯来斯、捷达、路华、宾利等系列,意大利的法拉利、的爱快、领先、快意等系列,法国的波尔舍系列,美国福特的TX3、30X、红彗星及克莱斯勒的帝王、纽约豪客、男爵、道奇、顺风等系列,日本的思域,凌志、豪华本田、奔跃、俊朗、淑女300Z等系列,均采用了先进的ABS。到1993年,美国在轿车上安装ABS已达46%,现今在世界各国生产的轿车中有近75%的轿车应用ABS。
 
扩展阅读:
 
•电子差速锁
 
    英文简称为EDS,又称为EDL。它是ABS的一种扩展功能,用于鉴别汽车的轮子是不是失去着地摩擦力,从而对汽车的加速打滑进行控制。
 
    EDS的工作原理比较容易理解。在汽车加速过程中,当电子控制单元根据轮速信号判断出某一侧驱动轮打滑时,EDS就自动开始工作,通过液压控制单元对该车轮进行适当强度的制动,从而提高另一侧驱动轮的附着利用率,提高车辆的通过能力。
 
    当车辆的行驶状况恢复正常后,电子差速锁即停止工作。同普通车辆相比,带有EDS的车辆可以更好地利用地面附着力,来提高车辆的运行性。可以说,EDS还是比较实用的。
差速锁一般只装配在高档的越野车上,比如奥迪Q7,宝马X5,奔驰GL等等,而且装配三个差速锁的车型也不多,一般只有中央差速锁。
 
    不能简单的说ABS是否减少刹车距离,因为ABS工作后产生表现取决于车所处的路面情况,对比下雨湿滑的路面而言肯定是抱死的轮胎在路面刹车距离要远。仔细看下ABS的工作原理就知道ABS需要表现的是安全和可操控性并非是一个简单的刹车距离可以说明!在打滑的路面状况下停车,我该踩制动踏板吗?对于配备了ABS的汽车而言,绝对不要点刹制动踏板。有时人们在路面打滑的情况下会使用点刹技术,以防止车轮抱死,并使汽车尽量沿直线停车。而在配备了ABS的汽车上,车轮决不会锁死,因此点刹只会让车停得更慢。对于配备了ABS的汽车,在紧急刹车时,应用力踩下制动踏板,并在ABS起作用的整个过程中踩住踏板不放。您会感觉到踏板在抖动,有时甚至非常剧烈,但这是正常现象,因此不要松开制动踏板。
 
•防抱死制动系统真的有效吗?
 
    防抱死制动系统确实可以帮助您更好地停车。它可以防止车轮抱死,如果在打滑的路面上使用,您就可以在最短的距离内停车。但是,ABS真的可以防止交通事故吗?这一点才是衡量ABS系统使用效果的真正标准。 为确定汽车在配备ABS装置之后发生重大交通事故的几率是增大还是减小,美国公路安全保险协会(IIHS)展开了几项研究工作。1996年度的研究结果表明,总体来看,配备ABS的汽车发生的重大交通事故并不比未配备ABS的汽车少。而且,尽管配备ABS的汽车在交通事故中确实较少造成其他车辆人员伤亡,但所造成的自身伤亡(尤其是ABS汽车单方事故)却比未配备ABS的汽车更多。 
 
    有人认为,配备ABS的汽车的驾驶员使用ABS的方法不对。他们要么是点刹制动踏板,要么是在感到制动踏板抖动时松开了制动踏板。也有人认为,由于ABS允许驾驶员在紧急刹车过程中操控汽车方向,因此导致更多的驾驶员偏离路面,发生撞车。较新的统计信息表明,ABS汽车在事故发生率方面有所改善,但仍无证据表明ABS提高了整体安全性。